Intermittency is an intrinsic property of turbulence characterized by strong fluctuations of the velocity field and very large gradients, in time and space. Turbulence intermittency becomes particularly relevant not only because of affects the transport of mass, moment and solutes in the water column but also influences biochemical and physical processes. In this talk, intermittency is analysed using statistical moments of the fluctuations of velocity and the dissipation rate. Based on the vertical component of turbulent velocity w' measured in a tidal flow with ADV instrument, the structure functions of w' and the moments of the energy dissipation rate are calculated. Multifractal and log-normal models allow to estimate the intermittency parameters for both cases. It is shown that for high Reynolds numbers the values of the intermittent parameters are close to those expected for fully developed turbulence but for relatively low Reynolds numbers they deviate substantially.